孔祥建

发布日期:2018-07-20     浏览次数:次   

理学博士,教授。

办公室:卢嘉锡楼324

电话:0592-2187879

电子邮件:xjkong@xmu.edu.cn

通讯地址:厦门大学化学免费十八种禁用网站(福建省厦门市思明区思明南路422号-18) 361005

 

个人简历:

厦门大学教授(2016-)

厦门大学副教授(2011-2016)

美国芝加哥大学访问学者(2014-2015)

厦门大学助理教授(2009-2011)

美国亚利桑那大学联合培养(2007-2008)

厦门大学博士(2003-2009)

聊城大学学士(1999-2003)

曾获教育部高等学校科学研究优秀成果奖一等奖(2020年,排名第二)、教育部青年长江学者(2016年)、国家优秀青年科学基金(2014年)、中国化学会青年化学奖(2012年)和全国百篇优博(2011年)等奖励与项目支持。目前担任《结构化学》和《Polyoxometalates》编委,《中国科学化学》、《高等学校化学学报》和《中国化学快报》青年编委,稀土分子材料与超分子器件专业委员会委员,中国化学会高级会员,中国科学院青年创新促进会特邀会员。


研究兴趣:
主要从事稀土及稀土-过渡金属团簇的合成、组装机理及磁光效应的研究。已在J. Am. Chem. Soc.(11篇)、Angew. Chem. Int. Ed.(11篇)、Matter、Nat. Commun.、Natl. Sci. Rev.、Proc. Natl. Acad. Sci. USA. 和Acc. Chem. Res.(2篇)等国际知名学术刊物上发表SCI论文120余篇,论文被他引7000余次。


近期主要代表论著:

  1. 1) Du, M.-H.; Dai, Y.; Jiang, L.-P.; Su, Y.-M.; Qi, M.-Q.; Wang, C.;* Long, L.-S.; Zheng, L.-S.; and Kong, X.-J.* Exploration and Insights on Topology Adjustment of Giant Heterometallic Cages Featuring Inorganic Skeleton Assisted by Machine Learning J. Am. Chem. Soc.  2023, 145, 23188−23195.

  2. 2) Li, C.-Y.; Xu, H.; Cheng, P.-M.; Du, M.-H.; Long, L.-S.; Zheng, L.-S.; and Kong, X.-J.* From Helices to Crystals: Multi-Scale Representation of Chirality in Double-Helix Structures J. Am. Chem. Soc. 2023, 145, 22176-22183.

  3. 3) Chen, C.-L.; Wang, C.; Zheng, X.-Y.; Zhang, R.;* Xu, Y.; Zhuang, G.-L.; Long, L.-S.; Zheng, L.-S.; Kong, X.-J.* and Cao, Y* Conductive Lanthanide Metal-Organic Frameworks with Exceptionally High Stability J. Am. Chem. Soc. 2023, 145, 16983−16987.

  4. 4) Wang, X.; Wang,; S.-Q.; Chen, J.-N.; Jia, J.-H.; Wang, C.; Paillot, K.; Breslavetz, I.; Long, L.-S.; Zheng, L.-S.; Rikken, G. L. J. A.; Train, C.; Kong, X.-J.* and Atzori, M.* Magnetic 3d-4f Chiral Clusters Showing Multi-Metal Site Magneto-Chiral Dichroism J. Am. Chem. Soc. 2022, 144, 8837–8847.

  5. 5) Du, M.-H.; Chen, L.-Q.; Jiang, L.-P.; Liu, W.-D.; Long, L.-S.; Zheng, L.-S.; and Kong, X.-J.* Counterintuitive Lanthanide Hydrolysis-Induced Assembly Mechanism J. Am. Chem. Soc. 2022, 144, 5653-5660.

  6. 6) Du, M.-H.; Wang, D.-H.; Wu, L.-W.; Jiang, L.-P.; Li, J.-P.; Long, L.-S.; Zheng, L.-S.; and Kong, X.-J.* Hierarchical Assembly of Coordination Macromolecules with Atypical Geometries: Gd44Co28 Crown and Gd95Co60 Cage Angew. Chem. Int. Ed. 2022, 61, e202200537;

  7. 7) Du, M.-H.; Xu, S-H.; Li, G.-J.; Xu, H.; Lin, Y.; Liu, W.-D.; Long, L.-S.; Zheng, L.-S.; and Kong, X.-J.* Modification of Multi-Component Building Blocks for Assembling Giant Chiral Lanthanide–Titanium Molecular Rings Angew. Chem. Int. Ed. 2022, 61, e202116296.

  8. 8) Pan, Z.-H.; Weng, Z.-Z.; Kong, X.-J.;* Long, L.-S.; and Zheng, L.-S. Lanthanide-containing clusters for catalytic water splitting and CO2 conversion Coord. Chem. Rev. 2022, 457, 214419;

  9. 9) Chen, R.; Zhuang, G.-L.; Wang, Z.-Y.; Gao, Y.-J.; Li, Z.; Wang, C.; Zhou, Y.; Du, M.-H.; Zeng, S.; Long, L.-S.; Kong, X.-J.;* and Zheng, L.-S. Integration of Bio-Inspired Lanthanide-Transition Metal Cluster and P-doped Carbon Nitride for Efficient Photocatalytic Overall Water Splitting Natl. Sci. Rev 2021, 8, nwaa234.

  10. 10) Du, M.-H.; Zheng, X.-Y.; Kong, X.-J.;* Long, L.-S.;* Zheng, L.-S. Synthetic Protocol for Assembling Giant Heterometallic Hydroxide Clusters from Building Blocks: Rational Design and Efficient Synthesis Matter 2020, 3, 1334–1349.

  11. 11) Zheng, X.-Y.; Xie, J.; Kong, X.-J.;* Long, L.-S.;* Zheng, L.-S. Recent advances in the assembly of high-nuclearity lanthanide clusters. Coord. Chem. Rev. 2019, 378,222-236;

  12. 12) Chen, R.; Yan, Z-H.; Kong, X.-J.;* Long, L.-S.; Zheng, L.-S. Integration of Lanthanide–Transition-Metal Clusters onto CdS Surfaces for Photocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2018, 57, 16796 –16800;

  13. 13) Yan, Z-H.; Du, M.-H.; Liu, J.; Jin, S.; Wang, C.; Zhuang, G.L.; Kong, X.-J.;* Long, L.-S.; Zheng, L.-S. Photo-generated dinuclear {Eu(II)}2 active sites for selective CO2 reduction in a photosensitizing metal-organic framework Nat. Commun. 2018, 9, 3353;

  14. 14) Zheng, H.; Du, M-H.; Lin, S-C.; Tang, Z.-C.; Kong, X.-J.;* Long, L.-S.;* Zheng, L.-S. Assembly of Wheel-Like Eu24Ti8 Cluster under the Guidance of High Resolution Electrospray Ionization Mass Spectrometry Angew. Chem. Int. Ed. 2018, 57, 10976 –10979;

  15. 15) Zheng, X.-Y.; Kong, X.-J.;* Zheng, Z.;* Long, L.-S.;* Zheng, L.-S. High-Nuclearity Lanthanide-Containing Clusters as Potential Molecular Magnetic Coolers Acc. Chem. Res. 2018. 51, 517−525;

  16. 16) Zheng, X.-Y.; Jiang, Y.-H.; Zhuang, G.-L.; Liu, D.-P.; Liao, H.-G.; Kong, X.-J.;* Long, L.-S.;* Zheng, L.-S. A Gigantic Molecular Wheel of {Gd140}: A New Member of the Molecular Wheel Family. J. Am. Chem. Soc. 2017, 139, 18178−18181;

  17. 17) Zheng, X.-Y.; Zhang, H.; Wang, Z. X.; Liu, P. X.; Du, M. H.; Han, Y. Z.; Wei, R. J.; Ouyang, Z. W.; Kong, X.-J.;* Zhuang,G.-L.;* Long, L.-S.;* Zheng, L.-S. Insight into Magnetic Interaction in Monodisperse Gd12Fe14 Metal Cluster. Angew. Chem. Int. Ed. 2017, 56, 11475−11479;

  18. 18) Kong, X.-J.; Lin, Z.; Zhang, Z.-M.; Zhang, T.; Lin, W. B.* Hierarchical Integration of Photosensitizing Metal–Organic Frameworks and Nickel-Containing Polyoxometalates for Efficient Visible-Light-Driven Hydrogen Evolution. Angew. Chem. Int. Ed. 2016, 55, 6411–6416;

  19. 19) Liu, D.-P.; Lin,X.-P.; Zhang, H.; Zheng, X.-Y.; Zhuang,G.-L.;* Kong, X.-J.;* Long, L.-S.;* Zheng, L.-S. Magnetic Properties of a Single-Molecule Lanthanide–Transition-Metal Compound Containing 52 Gadolinium and 56 Nickel Atoms Angew. Chem. Int. Ed. 2016, 55, 4532–4536.

  20. 20) Peng, J.-B.; Kong, X.-J.;* Zhang, Q.-C.; Orendáč, M.;Prokleška, J. Ren, Y.-P.; Long, L.-S.;* Zheng, Z.-P.; Zheng, L.-S. Beauty, Symmetry, and Magnetocaloric Effect-Four-Shell Keplerates with 104 Lanthanide Atoms J. Am. Chem. Soc. 2014, 136, 17938-17941.

  21. 21) Zhan, W.-W.; Kuang, Q.;* Zhou, J.-Z.; Kong, X.-J.;* Xie, Z.-X.; Zheng, L.-S. Semiconductor @ metal-organic framework core-shell heterostructures: a case of ZnO@ZIF-8 nanorods with selective photoelectrochemical response J. Am. Chem. Soc. 2013, 135, 1926-1933,

  22. 22) Peng, J.-B.; Zhang, Q.-C.; Kong, X.-J.;* Zheng, Y.-Z.; Ren, Y.-P.; Long, L.-S.;* Huang, R.-B.; Zheng, L.-S. Zheng, Z.-P. High-Nuclearity 3d−4f Clusters as Enhanced Magnetic Coolers and Molecular Magnets J. Am. Chem. Soc. 2012, 134, 3314−3317(Highlighted by Quantum Molecular Magnets virtual issue)

  23. 23) Peng, J.-B.; Zhang, Q.-C.; Kong, X.-J.;* Ren, Y.-P.; Long, L.-S.;* Huang, R.-B.; Zheng, L.-S. Zheng, Z.-P. A 48-Metal Cluster Exhibiting a Large Magnetocaloric Effect. Angew. Chem. Int. Ed. 2011, 50, 10649 –10652.

  24. 24) Zhao, H.-X.; Kong, X.-J.; Li, H.; Jin, Y.-C. Long, L.-S.;* Zeng, X. C.;* Huang, R.-B.; Zheng, L.-S. Transition from one-dimensional water to ferroelectric ice within a supramolecular architecture Proc. Natl. Acad. Sci. USA. 2011. 108, 3481-3486 (H.-X.Z., X.-J.K., and H.L.contributed equally).

  25. 25) Kong, X.-J.; Long, L.-S.;* Zheng, Z.-P.* Huang, R.-B.; Zheng, L.-S. Keeping the Ball Rolling: Fullerene-like Molecular Clusters Acc. Chem. Res. 2010. 43, 201-209.

  26. 26) Kong, X.-J.; Wu, Y.-L; Long, L.-S.;* Zheng, L.-S.; Zheng, Z.-P.* A 60-Metal Sodalite Cage Constructed by 24 Vertex-sharing [Er4(μ3-OH)4] Cubanes J. Am. Chem. Soc. 2009, 131, 6918-6919.

  27. 27) Kong, X.-J.; Ren, Y.-P.; Chen, W.-X.; Long, L.-S.;* Zheng, Z.-P.;* Huang, R.-B.; Zheng, L.-S. A Four-Shell, Nesting Doll-like 3d–4f Cluster Containing 108 Metal Ions Angew. Chem. Int. Ed. 2008, 47, 2398-2401(Highlighted by NatureChina).

  28. 28) Kong, X.-J.; Ren, Y.-P.; Long, L.-S.;* Zheng, Z.-P.;* Huang, R.-B.; Zheng, L.-S. A Keplerate Magnetic Cluster Featuring an Icosidodecahedron of Ni(II) Ions Encapsulating a Dodecahedron of La(III) Ions J. Am. Chem. Soc., 2007, 129, 7016-7017(Highlighted by NatureNature Nanotechnology and C&EN.



上一条:江智渊 下一条:匡勤